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Abstract 

Although recent theoretical and practical developments have considerably widened the range of 
modelling instruments, linear regression models still claim a central place in statistical modelling. This 
fact is largely due to the remarkable characteristics of the least squares approach. However, when the 
matrix of regressing variables is ill-conditioned, the stability of regression coefficients is in turn affected, 
and the model thus configured is implicitly unrealistic. Under such circumstances, the ridge regression 
estimator may prove to be a viable alternative. The present paper deals with the setting up of a ridge 
regression model for the catalytic cracking of a chemical reactor.    
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Introduction 

Catalytic cracking represents mainly the production process of gasolines and, secondarily, 
ofelines through complex chemical reactions. The whole process can be characterized by the 
following variables [1]: 

o the disturbances of the process highlighted at the level of the raw material by density, 
medium volumetric temperature and sulphur content; 

o the cracking process commands, identified by feedstock flow, output heater feedstock 
temperature, catalyst temperature in regenerator system and catalyst /feedstock ratio; 

o the output of the process: gas productivity and octane number.  

In order to model the process several interesting models have been suggested [1]. However, the 
extreme complexity of these models makes them difficult to use in the control of the catalytic 
cracking process. An alternative to these models has been elaborated in [2], by using the 
regression model, and their efficiency in the optimal management of the catalytic cracking 
process has been emphasized in [3]. The main goal of the present paper is to construct a linear 
model with regression coefficients stable from a numerical point of view.   

Theoretical Aspects of the Model Construction  

To construct the model experimental data drawn from [1] have been used. Table 1, taken over 
from this paper, contains a selection of volume 17, extracted from the observations recorded in a 
catalytic cracker during a 90 days’ span of functioning. The notations used are as follows: 
octane number (Y1), gas productivity (Y2), density (X1), volumetric temperature (X2), sulphur 



66 Cristian Marinoiu  

 

content (X3), feedstock flow (X4), output heater feedstock temperature (X5), catalyst temperature 
in regenerator system (X6), catalyst/feedstock ratio (X7). 

Table 1.  Experimental data for the catalytic cracking process 

No. 
obs. Y1 Y2 X1 X2 X3 X4 X5 X6 X7 

1 91.2 52.3 0.9007 442.0 0.38 183.4 316 732.0 4.6 

2 90.8 52.8 0.9029 441.5 0.25 183.1 311 730.0 4.5 

3 90.6 52.8 0.9028 434.4 0.25 184.3 310 732.0 4.7 

4 90.4 51.4 0.9043 448.6 0.29 189.7 310 725.0 4.6 

5 90.6 52.4 0.9009 442.5 0.38 183.8 320 731.0 4.7 

6 90.6 52.1 0.9039 440.0 0.25 182.4 310 734.0 4.5 

7 91.0 52.8 0.9042 445.8 0.38 182.6 312 728.5 4.6 

8 90.7 52.2 0.9050 445.0 0.32 183.7 319 733.0 4.5 

9 90.5 52.8 0.9007 436.8 0.39 182.8 315 732.0 4.6 

10 91.0 51.8 0.9014 440.2 0.28 182.7 316 733.0 4.5 

11 91.0 52.3 0.9004 443.2 0.49 187.9 316 726.0 4.5 

12 91.0 52.0 0.9020 436.0 0.23 191.1 324 734.0 4.4 

13 90.5 53.0 0.9030 441.5 0.25 184.6 311 733.0 4.9 

14 91.0 51.3 0.9068 449.6 0.43 182.2 314 727.0 4.6 

15 92.0 52.7 0.9033 442.4 0.36 182.7 312 732.0 4.5 

16 91.9 43.7 0.9217 438.2 2.14 173.6 314 727.5 4.8 

17 92.5 45.4 0.9247 438.4 2,19 188.7 319 727.0 5.0 

 

Let us consider the dependence between the dependent variable y and the independent 
(regressors) variables X1, X2, …, X7 to be of the form: 

 εβββ +++= 7711 .... XXy o , (1) 

where ε  is the additive error.  

The corresponding linear regression model may be written in a matrix form as follows: 

 y = Xβ + ε, (2) 
where: 
o y (17 x 1) is the vector of iy  observations for the dependent variable Y1 or Y2; 

o X(17 x 8) is the matrix of iii xxx 721 ,...,, observations, respectively for the regressors  X1, X2, 
…, X7, the elements in the first column of the matrix being all equal to 1; 

o β (8 x 1) is the vector of unknown parameters 71,...,, βββo ; 
o ε (17 x 1) is the vector of errors, with the mean E(ε) = 0 and a variance-covariance matrix 

Cov (ε, ε’) = σ2
I17, σ2 being the unknown variance of errors, and I17 the 1717× unit matrix. 
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When the matrix X has the columns linearly independent, the Ordinary Least Squares (OLS) 
estimator β̂  for parameter ),...,,( 71 βββ o=β  is as shown beneath [4]: 

 YX'XX'β 1)(ˆ −= . (3) 

The OLS estimator has remarkable properties: it is the best linear unbiased estimator 
( ββ =)ˆ(E ) in the class of the linear estimators in the observations of the dependent variable y. 
On the other hand, the numerical stability of the ORE can be affected under certain 
circumstances. Thus, if the columns of the matrix X are linearly dependent or almost linearly 
dependent, the matrix X is rank deficient; this is termed multicolliniarity or near 
multicolliniarity, respectively, and the matrix X is ill-conditioned [4]. The degree of 
conditioning of the matrix X is given by the so-called condition number, which registers values 
higher or equal to 1. The higher the values of this number, the worse-conditioned the matrix will 
be. Statistically speaking, this situation occurs when the regressors are strongly correlated. The 
unpleasant consequence is that the matrix determinant X 'X  is equal to 0 or is almost 0, which 
can affect the accuracy of the values of the matrix 1)( −XX'   and implicitly of the estimated 

regression coefficients 710
ˆ,...,ˆ,ˆ βββ .  An indicator of the presence of colliniarity is the VIF 

Variance Inflation Factor(VIF). It is recognized that a VIF value much higher than 1 clearly 
indicates instability issues of the corresponding coefficients [5].   

Formally, the Ordinary Ridge Estimator (ORE) differs from the Ordinary Least Squares (OLS) 
estimator by an arbitrary constant k  ( ∞≤≤ k0 ) added to the diagonal of the correlation 
matrix of the regressors X1, X2, …, X7.  In other words, if we define Z  to be the matrix of 

717× order obtained from X by canceling the first column and standardizing the other 
columns, the ORE estimator for our model  is defined as follows [4]: 
 YZ'IZZ'β

1
17 )(ˆ −+= kk , (4) 

where ∞<≤ k0 . 

For 0=k  the OLS estimator can be obtained, provided that we consider that the data of the 
matrix X were previously standardized. The resulting model is still linear, but the ORE, unlike 
the LS estimator is biased, and the extent of the bias depends on the vector of unknown 
parameters β . Also, when 0β →∞→ kk ˆ, , namely,  the ORE shrinks the estimates towards 
zero.  From a practical point of view, if the matrix Z is ill-conditioned, for the values of the 
constant k strictly higher than  0,  the determinant of the matrix that is reversed 17IZZ' k+  
will be non zero. The direct consequence is obtaining regression coefficients stable from a 
numerical point of view.  

Practical Aspects of the Model Construction   

To solve the model (2), SAS software has been used [6].  Solving the model means above all 
estimating the regression coefficients po βββ ,...,, 1 . To start with, it was sought to obtain the 

OLS estimator according to the formula (3) with the help of the REG procedure of SAS. We 
considered the case when y stands for Y1 (octane number). 

Unfortunately, there are very tight correlations among the variables of the system: for example, 
96.0),( 21 =XXcorr  and 66.0),( 71 =XXcorr . The consequence of these tight correlations 

is multicolliniarity or near multicolliniarity, which is indicated by the exaggerated size of the 
VIF value for the estimators 1β̂  and 3β̂  (Figure 1). Moreover, the presence of multicolliniarity 
is demonstrated by the fact that no regression coefficient is significant – see column (Pr > |t|). 
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Fig. 1.  OLS coefficients affected by multicolliniarity 
 
The clear conclusion is that there are serious reasons for doubt concerning the correctness of the 
obtained estimations (see Figure 1) and that the ridge regression must be used as an alternative. 
The ORE has been obtained according to the formula (4) by means of the same REG procedure 
of SAS. The graphic representation of the VIF values of the regression coefficients is given in 
Figure 2 for the range of values of k  between 0 and 0.2 with a step of 0.02. 
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Fig. 2. The VIF values ploted against k  

Figure 3 represents the ridge curves that offer an enlightening view over the stability of the 
regression estimators depending on parameter k  which varies between 0 and 0.20 with step 
0.02. It can be seen that while for the variables X2, X3, …, X7 the values of the regression 
coefficients estimators become stable for small values of k , the value of the regression 
coefficient estimator of the variable X1 becomes stable for much higher values.  
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Fig. 3. The values of the estimated regression coefficients ploted against k  

 

For theoretical reasons [5], we must choose the value of parameter k  as the value that produces 
a VIF value that is approximately equal to 1 for all the estimated regression coefficients.  
      

 
 

Fig. 4 . The tabulated values of the VIF. Note that for 1,12.0 ≈= VIFik . 

 
Further, around this value both the RMSE (Root Mean Square Error) for each coefficient and 
the very values of the coefficients have to undergo insignificant changes. Looking to the Figure 
2 to Figure 5 it can be noted that a convenient value is 0.12. 

 

Fig. 5. The estimated regression coefficients for some values of k (_RIDGE_) 
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Results and Conclusions  

We can obtain the estimated regression coefficients for the chosen value k=0.12 (Figure 5). 
This leads us to the following regression model:   

 76543211 .62.0012.008.0004.051.0003.02814.54 XXXXXXXY ×−×+×+×+×+×+×+= . 

The model underlines the fact that the octane number ( 1Y ) significantly depends on density (X1) 
and to a much lesser extent on sulphur content (X3),  catalyst /feedstock ratio (X7)  and the other 
variables of the system.  Similarly, we obtain the regression model for the second case 
( 2Y represents gas productivity): 

 76543212 .44.011.006.008.073.105.076.16057.95 XXXXXXXY ×+×+×+×+×−×+×−= . 

The ORE has been adopted as an alternative to the OLS, with a view to obtaining regression 
coefficients stable from a numerical point of view.  
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Rezumat 

Deşi dezvoltările teoretice şi practice ale ultimilor ani au lărgit considerabil paleta instrumentelor de 
modelare, totuşi, modelele de regresie liniară continuă să ocupe un loc central în modelarea statistică. 
Acest lucru se datorează în mare măsură proprietăŃilor remarcabile ale estimatorului prin cele mai mici 
pătrate. Totuşi, atunci când  matricea  variabilelor regresoare este rău condiŃionată, stabilitatea 
coeficienŃilor de regresie este afectată, şi implicit modelul obŃinut poate fi nerealist. În această situaŃie,  
estimatorul ridge de regresie poate fi o alternativă bună. Lucrarea de faŃă  se ocupă de construcŃia unui 
model de regresie ridge pentru procesul de cracare catalitică a unui reactor chimic. 

 


